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A slight modification of Feynman's original method leads to the Maslov 
correction in the path integral formula of a harmonic oscillator. Caustics are 
treated in a direct geometric way. 

1. I N T R O D U C T I O N  

As pointed out  by Souriau (1976), Feynman ' s  fo rmula  for  a ha rmonic  
oscillator (Feynman  and Hibbs,  1965, p. 63) 

( mo~ '~1/2 
K(x2, t21xl, tl) = 27rib sin~-(t2 - tl)] 

imco 
x exp 2h sin~-~(t2 - tl) 

x [(xl s + x22) cos oJ(tz - h) - 2xlx2] t (1.1) 

is valid only for  I t~ - t l l  < ~-/2, a half-period. The general expression is 
obta ined (Souriau, 1976) by introducing the Maslov correction (Souriau, 
1976; Arnold,  1967; Guil lemin and Sternberg, 1977) and given as 

K(x2, t2}x~, tl) = 2~rhlsin oJ(t2 - h)]- exp - + Ent w(t2rr- h) 

/mw 
• exp 2 h s i n ~ o ( t 2 -  h)  

x [(xl 2 + x2 z) cos co(t2 - q)  - 2x~x2] 1 (1.2) 

1 On leave from Veszpr6m University of Chemical Engineering (Hungary). 
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for t2 :/= t~ + k(~-/2), where k is an integer, and 

K(x2, t2,x~, t~) = exp f - 2  k }  8(x~ - (-1)~x2) (1.3) 

for t2 = tz + k(~-/2), where k is an integer (caustics). 
The effect of the correction factor 

exp - - i  Ent ~r- 

is a jump in phase at every half-period, observed by Gouy (1890) in classical 
optics and having the consequence of reversing the interference pattern (see 
Guillemin and Sternberg, 1977, for details). A similar phenomenon is observed 
in electron optics (Schulmann, 1975) as well as in molecular (Miller, 1970; 
Marcus, 1971) and nuclear (Levit et al., 1974) scattering. Equation (2) is more 
or less well known (Combe et al., 1978; Levit et al., 1974); it is generally 
derived by Morse's theory (Milnor, 1963). At caustics, i.e., for t2 = tl + 
k(~-/2), k integer, most of the authors have observed that (1.2) diverges; 
they study then the corrections due to higher-order perturbation. Souriau 
(1976) derives (1.3) by an indirect way, noting the relation to metaplectic 
representation. 

The aim of this paper is to show how the above results may be obtained 
by slightly modifying Feynman's original method. 

2. FEYNMAN'S METHOD 

First, we resume briefly Feynman's original method (Feynman and 
Hibbs, 1965, pp. 58-73) in computing the quantum mechanical kernel for a 
harmonic oscillator. 

Suppose It2 - tl[ < -~/2, the half-period (assumed implicitly by Feyn- 
man). Then, for any pair of points xl, x~ ~ ~ there is a unique classical path 
~: t -+ ~(t) ~ ~ between (x~, tl) and (x~, t2). It is useful to write then any path 
y in the form y = y + ~, where the "varied curves" ~ vanish at the end 
points: ~(tl) -- ~(t2) =- 0. 

The quantum mechanical kernel, being expressed in terms of a Gaussian 
integral, is a product of two factors (Feynman and Hibbs0 1965): 

K(x2, t2lx~, tl) = exp (~  S(,7)}F(t2 - tl) (2.1) 

S(~) is here the Hamiltonian action along the classical path '7. For a harmonic 
oscillator 

mw 
S(~) = 2 sin oJ(t2 - tl) [(x12 + x22) cos ~o(tz - tl) - 2xlx2] (2.2) 
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The second factor in (2.1) depends only on t2 - t~ and is a result of integra- 
tion over all paths ~ vanishing at the end points: 

F(t2 - t~) = exp (h i t1  ~ [@(t))2 - ~ dt ~ 7  (2.3) 

In order to assign a precise mathematical meaning and compute (2.3), 
Feynman expands the V's in Fourier series: 

( t -  q) (2.4) 
j= 

r;(t) = aj sin 
J = l  

and, instead of integrating over the ~'s, integrates over the space of Fourier 
coefficients (al, a2 . . . .  ): 

f f[ { ]) 
dal da, (2.5) •  

The difficulty introduced by the infinite-valued Jacobian J is removed by a 
suitable choice of the normalizing factors A, which symbolize the measure of 
integration in the space of Fourier coefficients. 

Carrying out the integration and fitting the results to the case oJ = 0, 
a free particle, Feynman gets (1.1). The ambiguity caused by i ~/2 in (1.1) 
is physically unimportant, for it gives only an overall phase factor. 

3. BEYOND CAUSTICS 

Note that beyond caustics, i.e., for It2 - tl I > ,-/2, but It2 - tl I # k(~-/2) 
we have again a well-defined classical path between (xl, tl) and (x2, q) and 
our formulas (2.1)-(2.4) are valid. A change to integration over Fourier 
coefficients is again possible. As to the factors J ,  A, and integration order, 
note that they are essentially the same, as in (2.5): they depend only on the 
transformation 7/-+ (az, a2 . . . .  ) and are completely independent of "physics", 
i.e., of  the function to be integrated. Thus (2.5) will be perfectly meaningful 
as soon as we arrive to remove the ambiguity due to the 

k = Ent oo(t2 - tl) Ent t~ - tl 
7r ~'/2 (3.1) 

number of negative terms in the sum of (2.5). This is achieved by an analytic 
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extension of the classical Fresnel integral, possible for Im 2, /> 0, A # 0 
(Souriau, 19782; Guillemin and Sternberg, 1977) 

r i2~r\ ls2 
~ ( "2t 2) dx=~ t ~ )  e'C"'~) '  f o r , ~ > O  

f (3.2) 
F(,~) = J exp t ~ x 

Thus Feynman's  formula has to be modified only by taking absolute value in 
[sin ~o(t2 - h)l and multiplying by 

exp - - -  k = exp ---ff Ent ~r- (3.3) 

in accordance with (1.2). 

4. AT CAUSTICS 

For t2 = tl + k(r/2), k integer, the situation is radically changed: all 
classical paths starting from xl coalesce to ( -  1)kxl. Thus for any arbitrary 
pair of  points xa, x2, we have either no classical path at all or an infinity of 
classical paths between them. Feynman's method breaks down even in this 
latter case, because the coefficient of a~ 2 in (2.5) vanishes and the Fresnel 
integral diverges. In terms of "infinite-dimensional manifolds" (DeWitt- 
Morette, 1976; Horvgthy and Ory, 1977; Milnor, 1963), (2.1) is valid if the 
Hamiltonian action, considered as a function defined on the set of  all paths 
between x~ and x2, has only one "critical point," i.e., classical path. At 
caustics this condition is not satisfied and one has to evaluate the Feynman 
integral by other means. 

The easiest way is to work with operators, rather than with kernels merely. 
Remember that the time evolution of a system is given as 

~t2(x2) = [Ut2_~1r = f~ K(x2, t2Ixl, ti)r dxl (4.1) 

By the multiplication law one has 

U~(v2) = [U,/~] 2~ (4.2) 

By (1.1) and (4.1) 

~Y~h] e , t l ,  ,, dxl (4.3) J~ 

2 He also conjectures that the fact that F(A) has an analytic extension only for Im A >/ 0 
seems to be related to the nonexistence of negative temperature for a thermodynamical 
system composed of harmonic oscillators. 
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essentially a Fourier transform and thus, noting that if the Fourier transform 
of a function is once more Fourier transformed, then one obtains the original 
function reflected with respect to x = 0, one gets 

~t2(x2) = e -~ /2~ t1 (  ( -  1)~x0 (4.4) 

which is just (1.3). 
Note that (4.2) could be interpreted as 

K(x2, t2[xl, h) = f K"(x2, tztxl, tl) da (4.5) 

where - is a continuous parameter characterizing the "critical points" (i.e., 
classical paths) of S. The partial amplitudes K 6 are composed of the contri- 
butions of the corresponding classical path ,76 multiplied by the correc- 
tion factor due to paths "oscillating around ,76. ,, These "oscillating paths" 
are exactly those which pass through ~ ( t l  + ~'/4),,Y(h + 3~'/4) . . . . .  
,7~[h + (2k - 1),/4]: 

i S(~6)F6(t2 _ tl) (4.6) K"(x2, t2lxl, h) = exp 

It is easy to see that the dividing points could be substituted by any ordered 
set t <~, t<3>,..., t <2~- z> satisfying 

T T 7" 
t~ < t ~ < t~ + ~  < . . . <  h + ( k -  1)~ < t <2k-1~ < t~ + k ~  (4.7) 

(4.5) and (4.6) comprise the substitute to (2.1) valid for coalescing paths. 

5. C O N C L U D I N G  R E M A R K S  

In describing the propagator near caustics, one studies generally 
(DeWitt-Morette, 1976; Schulmann, 1975; Miller, 1970; Marcus, 1971 ; Levit 
et al., 1974; Massman and Rasmussen, 1975) the effect of higher-order correc- 
tions due to anharmonicity, which change our g to a more realistic function. 
We conjecture, however, that the phase of the wavefunction will be determined 
essentially by the pure quadratic part, which we have studied. This would be 
observable in interference experiments, assuming we have a kind of structural 
stability (Souriau, 1977) in phase. This problem will be studied elsewhere. 
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